| 
  • If you are citizen of an European Union member nation, you may not use this service unless you are at least 16 years old.

  • Stop wasting time looking for files and revisions. Connect your Gmail, DriveDropbox, and Slack accounts and in less than 2 minutes, Dokkio will automatically organize all your file attachments. Learn more and claim your free account.

View
 

B11 (adv)

Page history last edited by PBworks 13 years, 8 months ago

Outcome: B11(adv) analyze the quadratic formula to connect its components to the graphs of quadratic functions.

 

Originators: Tom and Nicole

 

Explanation: The quadratic formula is derived from the function y=ax2+bx+c. As long as your function can be put into general form, you can use the quadratic formula to find its roots and discriminate.The roots allow us to see where the function passes throught the x-intercept, if it does at all. The roots can either be real or complex numbers. The discriminate (b2-4ac) lets us see how many x-intercepts we're dealing with. If the discriminate is > 0 the function will have 2 real roots. If the discriminate is = 0 then you have one real root.

And if the discriminate is < 0 you have 0 real roots.

The + - in the quadratic formula is there so that you can get both possible roots.It's there because when you took the the square root of each side of the equation, it could be either positive or negitive numbers.         

 

Sample Problem:

Question

Given the function. 

Create a graph,state the discriminate, and find the roots using the quadratic formula.

 

Solution/Graph

 

(need graph)

 

Solution/Discriminate

 

The discriminate is 0 therefore, you have 1 double real root.

 

Solution/Roots

 

Both roots are 8.

 

 

 

 

 

 

 

 

 

 x = [-b+/-sqrt(b^2-4ac)]/2a

 

 

 http://www.purplemath.com/modules/solvquad4.htm 

Comments (1)

Anonymous said

at 8:14 pm on Mar 13, 2007

Tom and Nicole, nice work but you never put your names on it anywhere.

You don't have permission to comment on this page.